欢迎来到笔墨纸砚网!!!
当前位置:首页 > 咨讯

绘画艺术中数学密匙

时间:2022-05-27 16:10:07 浏览: 2 作者:笔墨纸砚网

  绘画与数学分属于艺术和科学两个不同的领域,而艺术和科学常被人们看成是文化的两个“极点”,代表着两种不同的智慧结晶,但它们之间并不存在严格的界限。意大利文艺复兴时期的绘画巨匠列奥纳多·达·芬奇认为:“一门真科学必须具备两个条件:一、以感性经验为基础;二、能象数学一样严密论证。”他认为绘画是最有用的科学,而绘画与数学的关系古往今来也一直为人们所津津乐道。

  美术的发展同数学一样具有悠久的历史。在古代埃及时期,不论平面作品还是立体作品,人物的风格总是神圣不可侵犯,这是因为在雕塑或描绘人物时,创作者运用了标准的几何格子来确定作品的严谨性。而拜占庭时期的艺术创作实践中,则采用了另一个独特的测量体系,即“拜占庭同心圆图解法”,3个同心圆形成了一个光环,这是一种代数性或数学性的测量体系,用一个固定的张开两脚的圆规,在画面上组装每个人物,由于使用了这种“构造性”,便使得作品具有灵活性和生动性。因此,不论是几何格子的使用,还是拜占庭同心圆图解法,都有数学原理的体现。

  事实上,许多绘画大师在入门时,都具备了大量数学知识基础。达·芬奇14岁左右随父亲到佛罗伦萨,师从画家和雕塑家委罗基奥。委罗基奥的画室热心于透视学和解剖学的研究,以科学的理论和实验方法对待绘画艺术,他的画坊成为劳动、艺术与科学相结合的场所,在这样优越的条件下,少年达·芬奇的才能得以迅速发展。

  绘画发展到现在,塞尚、毕加索、勃拉克、蒙德里安等诸多大师的作品里面都有大量几何图形。绘画的思维、精神、基本成分及观察方法等,都与数学密不可分,绘画中的数学基础也更能使画家展现他们的“艺术意图”。

  数学与艺术在其深层结构上有着许多共同的地方,也有着许多巧妙的联系。公元前六世纪是毕达哥拉斯学派盛行的时代。毕达哥拉斯的学生多数是数学家,他们用自然科学的观点来考察美学问题,认为美就是和谐。他们把数看作是世界万物的本源,并把数与和谐的原则用于艺术,认为艺术也必须借助于数的关系。数学家和画家们所思考和解决的问题,都具有美的共性——对称与平衡、比例与尺度、节奏与韵律。例如,达·芬奇完美的艺术代表作《最后的晚餐》便充分体现了数学与绘画的天然联系,这幅名画利用了优美的比例,即黄金分割比。由此可见,完美的艺术创造离不开完美的数学关系。

网友评论仅供其表达个人看法,并不表明本站立场。
相关阅读
  • 跪求关于战争的诗词及赏析

    1、战城南 两汉:佚名 战城南,死郭北,野死不葬乌可食。 为我谓乌:且为客豪! 野死谅不葬,腐肉安能去子逃? 水深激激,蒲苇冥冥; 枭骑战斗死,驽马徘徊鸣。 梁筑室,何以南?何以北? 禾黍不获君

  • 关于端午节最著名的古诗词句子 (40句)

    关于端午节最著名的古诗词句子 (40句) 客里几逢端午节,看成雪鬓与霜髯。又是新一年的端午节将至,端午蕴含着深邃丰厚的文化内涵,在脊历闭传承发展中杂糅了多种民俗为一体。有哪

  • 一轮明月颂家国古诗?

    一轮明月颂家国古诗? 《关山月》【唐】李白 明月出天山,苍茫云海间。长风几万里,吹度玉门关。 汉下白登道,胡窥青海湾。由来征战地,不见有人还。 戍客望边色,思归多苦颜。高楼当此

  • 扶桑在中国古代的含义?与连理枝有何不同?

    扶桑在中国古代的含义?与连理枝有何不同? 扶桑 1.神话中的树名。《山海经·海外东经》:“ 汤谷 上有扶桑,十日所浴,在 黑齿 北。” 郭璞 注:“扶桑,木也。”《海内十洲记·带洲》:“